QD HEWLETT®
PACKARD
Expanding Possibiliti

Rapid Prototyping
Methods for Embedded
System Development
Reduce Time-to-Market

Brian T. Levy
Phone: (360) 212-4219
Fax: (360) 212-3035

Ron Odenheimer
Phone: (360) 212-6126
Fax: (360) 212-3035

Hewlett-Packard Company
1115 SE 164™ Avenue
Vancouver, Washington 98683

Practical Techniques to
Accelerate Product
Development Symposium

(4]

HEWLETT®
PACKARD

Expanding Possibiliti

Abstract

Time-to-market pressures have
created the necessity to identify
faster and more reliable design
methodologies. Shifting the
firmware development phase
back in the design cycle to run in
parallel with ASIC design has
enabled greatly reduced design
cycles and increased the
probability of first silicon
meeting all the system
requirements. FPGA and logic
synthesis technologies are key
enablers of this methodology.

Authors/Speakers
Brian T. Levy

Current Activities:

Brian Levy is a member of the
ASIC design team working on
designs for future products.

Author Background.:

Brian Levy has a MSEE from
Stanford and 13 years
experience in Analog and Digital
1C design.

Ron Odenheimer

Current Activities:

Ron Odenheimer is a member of
the ASIC design team at
Hewlett-Packard, Vancouver,
WA. working on future inkjet
printer products.

Author Background.:

Ron Odenheimer has a BSEE
from California Polytechnic
University, San Luis Obispo,
Calif. and has 19 years
experience in industry and 15
years experience working on
digital IC design.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #01

Rapid Prototyping
Methods for Embedded
System Development
Reduce Time-to-Market

Brian Levy, Ron Odenheimer
Hewlett-Packard Company
1115 SE 164th Avenue
Vancouver, Washington 98683

i) HEWLETTS
28 pACKARD
[Expanding Possibilties)

The time-to-market of an inkjet printer was
significantly reduced through the use of co-design
methods employed in ASIC and firmware
development. Providing the tools and methods
for running these development efforts in parallel
allowed early access of a hardware platform for
firmware development and reduced risk of
unanticipated system interaction and ASIC
functional problems. The current technologies
for HDL synthesis and FPGAs are key enablers of
a co-design methodology.

Slide #02

Major Topics

® Introduction

® Project Development Objectives
® Development System Overview

® Emulation with FPGAs

® System Debug and Verification

® Results

® Team/Organizational Issues

® Areas for Improvement

® Summary

This paper begins by offering some background
information to help understand the product
objectives and design environment.

An overview of the development system
highlights all the elements necessary to achieve
the design and verification objectives.

Since the current FPGA technology is a key
enabler of this methodology, emulation with
FPGAs is discussed in some detail.

The results achieved demonstrate the
effectiveness of this methodology.

There is an element of magic or luck in bringing
together a number of people to form a high
performance team and in creating an
environment in which multiple teams work most
effectively together. Not professing to have “the
answer,” some ideas that worked for these teams
are presented.

In an effort to become a truly Learning
Organization, we look back to see what was really
effective and what we might do differently in the
future.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #03

Introduction

o Development of Color InkJet Printer

e Critical Coupling Between Driver, Firmware,
Electronics (Software + Hardware)

o Rapid Time-to-Market
(Schedule, Schedule, Schedule)

o Reduce Risk through Rapid Prototyping

Slide #04

The product under development was leveraged
from a previous product with changes planned to
increase the speed and print quality of the printer
output and reduce product cost. This required
significant changes to some core functional blocks
of the ASIC and significant changes to the
firmware and driver. While these were the major
areas affected there were also additional changes
included to achieve the cost reductions.

The schedule, performance and resources were
specified and constrained so the risks needed to
be reduced as much as possible to give the
product design team the best chance of success
in meeting the objectives. We had good results
using rapid prototyping tools on previous projects
and with the size of FPGAs expanding rapidly we
expected reduced prototype system complexity,
faster turn-around times and higher clock rates.

With this in mind, we set out to identify current
tools and technologies that would ease rapid
prototyping so we could build firmware
development systems earlier in the product
development cycle thus reducing the risk of
encountering obscured system integration
problems and ASIC functionality problems.

Project Development Objectives

e Start Integration of Firmware and ASIC Code
before ASIC has been completed

e Run target firmware on target hardware
e Exercise all critical Print Modes
e Print using major modes prior to freezing ASIC
® Run at 1/2 target clock speed of 16 MHz
® Release Alpha Firmware for on-board ROM
e Exercise I/Os at speed
- IEEE 1284, High Speed Serial (Apple)

Specific objectives were set which would drive
the co-design effort and reduce risk. From past
projects, we had found that the earlier the
firmware and ASIC engineers are working
together to prove the functionality of a system
element, the earlier design issues and bugs are
identified and the easier they are to fix. Design
architecture or strategies may even be adapted
based on new information at this early point in
the project.

To reduce schedule and improve resource
utilization, the amount of effort expended on test
stubs and maintenance of multiple hardware
platforms had to be minimized. Sometimes it
seems easier up front to do things differently for
emulation than for the final ASIC. There are
multiple dangers and inefficiencies along that
path. Maintaining multiple (and slightly
different) versions of the same block is time
consuming and risky. The “real” design is not
being exercised in the currently operating
prototype! Also, there were certain functions that
were required by the chip but not necessary for
the operation of the printing emulation system.
These elements were placed at a higher level of
the ASIC design to avoid unnecessary complexity
in modules targeted for FPGA implementation.

QD HEWLETT®
PACKARD
Expanding Possibiliti

One milestone that is very clear and well-defined
in printer development is printing legible text and
correct images. By setting the objective of
printing using major print modes, almost all of the
modules of the ASIC and firmware are operated
in concert. This exercises the firmware in a
manner typically not achieved until prototype
systems are built with first silicon ASICs. The
functional coverage of ASIC code is also greatly
enhanced.

One compromise that was made to allow the use
of FPGAs was a reduced system clock rate. This
decision was based on lengthy discussions of
objectives between management, firmware and
hardware engineers. It would have taken an
unknown additional time to achieve full speed,
and the possibility existed that blocks of HDL
would have to have been re-written to achieve the
goal. In the end it was decided that most of the
ultimate goals would be achieved at a reduced
clock rate and still make schedule. Due to EMI
costs and risk, the printer system clock was
targeted at 16 MHz. Initial studies indicated that
this was still too fast to run the emulation system
without significant further investigation. Thus
the objective of running at 8 MHz or half the
target system clock was set. Additional
configuration registers were added to the design
so that scale factors could be set,
programmatically, thus allowing real-time
operation of areas such as I/0 and DC servo.

Slide #05

The firmware development environment
consisted of an HP 735 workstation running the
HP emulator interface and development and
debug environment, for the Motorola 60000
processor, and an HP in-circuit emulator for the
68000 connected to the LAN and a 68000 socked
on the printer.

The ASIC was coded in Verilog HDL, simulated
with Verilog-XL, compiled with Synopsys HDL
Compiler. Waveform debug was done with
Undertow.

The ASIC was compiled for either the target
HP10 process or Altera 10K100 FPGAs.

The printer mechanism was leveraged from the
previous product. The PCB was enlarged to
include three ZIF sockets for the FPGAs and
connectors for logic analyzer pods for signal
observation.

Slide #06

Development System Overview

HP 68000 ICE for Firmware Development

HP 16500C Logic Analyzer

HP PC Running Driver to initiate Print Jobs
ASIC Tools

- coded in Verilog

- Simulated with Verilog-XL

- Synthesized with Synopsys HDL Compiler
o HP 735/125 workstations on LAN
e Leveraged Previous Generation Mechanism

e Single PC Board, all product components plus
three ZIF sockets for FPGAs

The development system was composed of
firmware development tools, ASIC development
tools, digital system debug tools, prototype
printer and PC running driver.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #07

Emulation with FPGAs

e Consider emulation requirements and trade-offs early
- affects ASIC design and architecture
- affects firmware
e Emulation efforts may be minimized with up front planning
e Emulation benefits both ASIC and firmware
- firmware gets earlier look at hardware
- ASIC benefits from additional exercise of design
e Plan chip hierarchy with FPGA capabilities in mind
- Eliminates duplication efforts for ASIC and testbed

Slide #08

Structuring for Synthesis

e Common HDL Compiler used for both ASIC and
FPGA synthesis.

- delivers best results when synthesized blocks result
in less than 10kgates.

e Keeping the size down also facilitates FPGA partitioning.
- easier to relocate smaller blocks into another FPGA.
- FPGAs get harder to partition with huge blocks.

- results in fewer opportunities to tune partitioning for
faster performance.

A successful ASIC/firmware project, if it uses
emulation, will consider emulation from the
beginning. The ASIC design and architecture is
affected, as is firmware. It is surprising how a
little up front planning can minimize the
emulation effort.

Tip: If project pressures allow the time, try to fit
your design into two or more vendor's FPGA
products. It is usually not necessary to complete
the entire process, just place and route to arrive at
size and speed metrics.

Both firmware and ASIC teams benefit from an
emulator that is as much like the final ASIC as
possible. Firmware gets an early look at hardware
and a platform on which to develop code. The
ASIC team has another avenue beside simulation
to test the design.

We used a common HDL compiler for ASIC and
FPGA synthesis. The compiler works best when
it can synthesize code that results in modules less
than ten thousand gates. This size range also
facilitates partitioning the design for
implementation in multiple FPGAs. They are big
enough to get adequate functionality yet small
enough to easily move during the partitioning
process. FPGAs get harder to partition when
modules are huge. If room is needed in an FPGA,
it is easier to move a small module than it is to
break up one large module into components.

Large modules result in fewer opportunities to
tune an emulator design. By tuning we mean
moving modules around in order to either make
more room in an FPGA for faster compile times or
for faster operation. Tuning is one of the few
degrees of freedom an emulator designer has.

There usually isn’t time, nor is it desirable, to
design a separate hierarchy for the emulator and
the ASIC. If the ASIC hierarchy is architected at
the beginning, with the goal that the bottom
levels are emulatable, no extra effort is required.
Design the hierarchy such that all of the emulator
fits at and below a defined level. Make it a design
goal: from the selected level on down will be
included in the emulator. This makes the
emulation system’s header identical to the
corresponding level in the ASIC. This not only
reduces the number of structural verilog netlist
files that must be maintained but it also allows
simulations designed for the ASIC to run on the
compiled emulator gates.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Emulation is not a replacement for good
functional test vectors. Each method has its own
place and each has unique capabilities of finding
different types of problems.

Slide #09

Slide #10

ASIC Hierarchy Example

® Testbench
- Clocks defined
- Board level components
- Instantiation of ASIC top level.
- This level is not part of the ASIC to be synthesized.

e Top level
- This is the complete chip - top hierarchical level.
- Instantiation of pads.
- Instantiation of Core.

ASIC Hierarchy Example

e Core
- Instantiation of RAM, ROM, CPU, PLL.
- Instantiation of LC module

e LC
- Includes test structures that will be synthesized as part
of ASIC but are not needed for printing system and
cause problems for FPGAs
- Instantiation of SC module

e SC
- Everything at this level and below goes into emulator
- Instantiation of all major functional modules

Once definitions for each hierarchical level are
created, the question of where design entities
belong falls easily into place. The hierarchical
requirements for the emulator will support the
ASIC effort almost one for one and vice versa. An
example of the suggested hierarchy is outlined in
the slides.

The last level was designated as being emulatable.
Having made that decision, the placement of
reset tasks, miscellaneous clock circuits, RAM,
ROM, CPU becomes easy to place in the ASIC
hierarchy.

Embedded ASIC entities that cannot be emulated
are added as external devices.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #11

Slide #12

Simulation Benefits of Following
Hierarchy Conventions

e The same test vectors used for simulation
runs on ASIC and FPGA implementations.

e Any differences are accommodated through
the use of “ifdefs” in the verilog testbench.

e This leverage of test vectors leads to greater
confidence that emulation system will function

properly.

Code for Emulation

e Negative edge flip flops
- Hard for timing constrained FPGA synthesis

e Transparent latches in ASIC
- Subject to skew and delay problems in FPGA

- Inconsistent results, differ from one compile
to the next

e Internal tri-state buffers
- FPGA tool converts to gates anyway

Our test vectors are used in both environments
ASIC and emulator as a result of the above
hierarchical rules. Any path differences, such as
fewer levels of hierarchy for the emulator, are
handled by "ifdefs” in the testbench that is used
for both the ASIC and the emulator.

Running simulations on the emulator gates offers
earlier detection of any functional problems that
may have resulted from compile problems and
increases confidence in the functionality of the
FPGA download.

Coding for emulation is a paper by itself and a
topic that is well covered in the literature put out
by the FPGA manufacturers. It will not be
covered here in detail except for three issues that
are problematic.

If possible don’t design with negative edge flip-
flops or use inverted clocks. Each time we've
done this it has resulted in designs that are hard
to compile. Those modules that have used
negative edged flip-flops have been the slowest in
the design.

If possible, don't design with transparent latches.
Many FPGA vendors don’t include a latch cell in
their library so it becomes routed logic with the
potential for glitches and skew problems. Often
the compile results will be inconsistent; the
circuit works on one compile but not the next.

Try not to use internal tri-state buses. If you can,
route separate buses for read and write lines and
combine read buses with combinational logic.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #13

Maintaining ldentical Source Files for
ASIC and Emulation System

e Goal - no branching of source code to support emulation.
- target firmware run on target hardware.
- exercise a real working model of ASIC.

e Sometimes this requires the addition of incremental gates
- An example is the addition of a configuration register

to initialize the counter in the 1MHz clock generator.

e Small gate cost delivers significant benefit.

While ASIC area equates directly to cost, the
addition of a small number of gates to improve

the overall ASIC results often pays real dividends.

One example is SCAN, which adds considerably
to the area but also greatly enhances testability,
thus saving costs due to test escapes. Adding a
few additional registers or logic to a design to
accommodate emulation is similar in that it
enhances the testability of the ASIC up front as it
is being designed. Our goal was to have an
identical database for the emulator and the ASIC.

We took the tack that if we could add a small
amount of hardware and it would help to meet
the above goal, it was worth it.

As an example, we added hardware to speed up
clocks for real-time activity. Since the emulation
system ran at half the targeted system clock, any
real-time reference clocks needed to be scaled
back up when running in the emulation
environment. Hardware was added to insure the
1 MHz derived clock was the same for the ASIC
and emulator. The hardware cost was small and
the benefit of identical ASIC and firmware source
code was significant.

Slide #14

Partitioning SC Level to
Multiple FPGAs

® Make it easy to change
- Automate as much as possible
o Gate Count

- Leave room for expansion, revision and the
unknown.

- Don't squeeze to fit into one part.
® Interconnections
- Partition to minimize number of interconnects.

- Partition to minimize delay of interconnecting
signals.

You can ignore this section if your entire design
fits into one FPGA. With the higher density
FPGAs available today, more designs will fit into a
single FPGA, especially with FPGAs approaching
250Kgates. However, many designs will still
require multiple FPGAs for emulation and, thus,
will also require the design to be partitioned.

We have had experience in the past with
automatic partitioning, but have found that the
task is very complex for a software tool to
perform. This complexity translates into long
compute time and frequent partitioning problems.
Since the partitioning task is only necessary at
the beginning of a design and when a group of
modules expands beyond the limits of the FPGA,
there is a lot of compute time wasted repeating
the task every time another compile is launched.
On this project, we decided to manually partition
the design. This is really no more than grouping
functional blocks together and paying attention to
total size and interconnect requirements vs.
FPGA resources.

We start with estimated gate counts of functional
modules that would go into the emulator. After a
number of trials we determined the number of
ASIC gates that would fit into one FPGA and
partitioned the design estimated to be 50Kgates
to fit into three FPGA devices.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Tip: Leave plenty of room for expansion. Most
of the FPGA place and route tools work best
and compile quicker when parts are not filled
to capacity.

There is as much art as science to placing the
right group of functional modules together to
form an FPGA partition. Although it seems like
the partitioning task can be broken down into its
components, keep total gate counts low enough
in an individual part to allow room for expansion,
bug fixes and future revisions. Keep functional
blocks together, and keep the frequency of
external signals to a minimum, keep
interconnecting pins under the maximum for the
package. However, partitioning is not always as
straightforward as it seems. Circuits take more
space than intuitively obvious. Interconnects
between functional blocks become pins that add
up quickly past maximums. FPGA place and
routing efficiencies and tool idiosyncrasies make
the partition equation complicated, to the point
that we have come to the conclusion that the best
way is to hand pick a partition, then try it. Make it
easy to change partitions and try new ones. It
usually takes a couple of tries.

Usually the ASIC is not complete when the
emulator project starts. We left room for
expansion, so we did not have to re-partition in
the middle of the project.

Try to anticipate some of the future pins
necessary and reserve them. Some FPGA
vendors utilize unused pins as routing resources,
so you can't assume that because your design has
not used a particular pin that it is going to be left
free. We dedicated some extra pins to spares to
alleviate this problem.

Rigorous adherence to naming conventions helps
speed the partition problem by promoting faster
understanding of unfamiliar code.

Slide #15

Effective Use of Scripts

e Allows more control over partitioning.

- The designer is in the best position to group
modules.

e Generate accurate results

- Large number of nets and ports - manual
interconnection is error prone.

- Speeds creation of PCA schematic.
e Usable in future projects.

- Good scripts formalize a process that can be
used as is, or adapted to subsequent projects.

This project relied on scripts for synthesis and
simulation, but it could have greatly benefited
from scripts to put partitions together and check
them for accuracy. Currently, we are using scripts
in the emulator creation process. Scripts are a
great tool for helping with the first time accuracy
of emulator design. With pin counts of the latest
generation of FPGA’s approaching 600 and
systems involving 3000 pins or more it’s all too
easy to make a mistake interconnecting multiple
FPGA packages.

We wrote scripts to automate the process of
FPGA module creation and inter-FPGA wiring.

We still wanted to assist the placing and wiring of
all the FPGAs on the board schematic. So another
script was created to take the output of the Altera
FPGA tool with pin assignments and convert to
Mentor Graphics schematics. With this script, a
schematic page was created for each FPGA.

Tip: We wrote a script converting the text
based pin assignments generated by the
Altera tool (Max+PluslI) into Mentor
Graphics schematics. The result was a huge
saving in time and PCB accuracy.

The script used Perl and Ample to create a
single-level-hierarchy schematic of each
FPGA that automatically connected the
appropriate pins between chips.

QD HEWLETT®
PACKARD
Expanding Possibiliti

The same project structure rules mentioned
earlier, plus attention to coding standards, also
helps when it comes to scripts.

We are getting better and better at getting
everyone on the team to be consistent in the use
of file, module and instance names. We call an
instance the same as the module name or, in the
case of multiple instantiations, we use a suffix to
distinguish between the instances. Files are
named the same as the modules they contain. For
scripts, it means that parsing through the
directories, files and modules is easier to
accomplish.

Slide #16

Emulator Board Design Issues

e Single board implementation results in reliable
operation.
- solid and robust connections improves reliability.
- No cables running between multiple boards.
- Small footprint on engineers desk.

e Emulation PCA mounts directly to mechanism.
- results portable implementation.
- may be easily moved without damage or problems.

e All critical signals brought out on LA pod connectors.

e ZIF sockets used for FPGAs.

The board we designed for this project was
different from previous emulator designs. Where
past emulators were table top boards cabled to
the printer mechanism, this emulator board was
simply an expansion of the printer PCA to include
three ZIF sockets for the FPGAs, many logic
analyzer connectors for signal observation, and
other emulation support circuitry.

The board, about 5X larger than the production
board, contained the larger voltage regulator
needed for the FPGAs, as well as external CPU,
memory, and analog components.

Our emulators do not seem to stay in one place
and take a beating during moves. We tried to
make the systems robust enough to withstand the
punishment of day-to-day wear. Eliminating
many of the cables from previous emulator
designs resulted in a highly portable test vehicle
with superior reliability.

Tip: Just because it’s a prototype doesn’t
mean that it should not be mechanically
sound. Use good mechanical practice to
secure test equipment cables and emulator
pods. If you can, don’t obscure the front of
your board by keeping logic analyzer and
other cables from draping over it.

Without a doubt, boards are more susceptible to
static than in the past.

Tip: Educate firmware and/or software co-
workers on proper ESD procedures. This
avoids wasted time and money in ESD
damaged chips.

The FPGAs become the first component
substituted when something fails to work.
Without proper ESD precautions, there is a
chance of causing catastrophic or partial failure of
the FPGA devices. This becomes very expensive,
given the cost of the latest generation of dense
devices.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #17

Slide #18

Emulator Change Management

e Developed revision documentation and
communication process

- used web browser for easy access.
e Scheduled incremental releases.

e Optimized turn around by trading off
performance and packing density for turn
around time.

FPGA Programming

e Two programming methods for FPGAs:
— Download cable; used during emulator debug.

— Serial PROMS places in sockets on PCA;
downloads automatically during power-on
cycle. (two per FPGA)

e Future improvements to FPGA Programming:
— Single Flash for all FPGAs.
— Takes less time to program and handle.

Changes are inevitable. Bugs are identified and fixed
and improvements and additional features are added.
Sometimes changes are made to bring out an internal
signal for debug or timing or to add specia hardware
for aspecia development function.

We used some basic rules governing what special
change requests were honored and tried to
nominally limit ourselves to one hardware update
per week.

We tried to limit the constraints placed on the
design in both the synthesis and FPGA place and
route processes. This turned out to be an
iterative process, always compromising between
performance and fast turn-around time.

We did try to keep the change process simple,
fast, and heavily scripted. The scripts make it
painless to kick-off an overnight compile or spawn
jobs over multiple machines to speed up the
overall turn-around time.

The FPGAs parts are RAM-based and require an
external source for configuration information. We
designed two separate configuration methods
onto the emulator system.

The download cable proved it's worth during
emulator board debug, allowing quick turn-
around time. Firmware engineers with special
hardware requirements also tended to use this
method.

Once the hardware settled, serial EPROMs were
used, which automatically download
configuration data each power-up cycle.

One of the advantages of programmable FPGAs
can also become a burden. Revisions are easily
generated. Make sure that revisions between
FPGA code releases are well documented and
easy to maintain.

The large Altera parts, for example, require two
serials ROMs per FPGA. This project used three
FPGAs per system. The six ROM's required to
configure the devices needed to be well marked
as to their relative position on the board as well
as indicating what revision of the code they
contained.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Every project goes through at least one instance
when new firmware compile is coupled with new
FPGA code, and the design doesn’t behave the
way it did “before”. At that moment, a clear
understanding of what was changed is vital to a
quick resolution of the problem. Clear revision
control helps maintain and control the inevitable
special versions of the hardware.

We used web pages with revision information for
availability (UNIX systems and PCs) and easy
access.

Each new firmware revision was verified. Our
test equipment played a major role in making that
job go faster and easily.

The verification process frequently involved
people from multiple disciplines and domains.
The normal troubleshooting group, consisted of
firmware and digital hardware engineers,
however, frequently the assistance of mechanical
or analog engineering was needed to get at root
cause. And then Murphy showed up.

Slide #19

Those spares were left unassigned inside the
FPGAs. However, the Altera FPGAs use
unassigned pins as tie points for internal nodes.
So the spare traces inadvertently connected
various internal nodes, outputs and inputs
together among the three FPGAs.

Slide #20

Verification Examples

e Debugged PC board connectivity
- identified FPGA connection problems

- missing pull-ups (needed on development
board not ASIC)

- discrete analog section for servo feedback
processing

e Evaluate serial interface to carriage analog ASIC
e Look at pen control to carriage interface
- handshake between carriage and pen control
- 1200 DPI twice rate of 600 DPI - timing concerns

System Debug and Verification

e Configured FPGAs with additional outputs
of critical “internal” nodes to view more
meaningful information.

e Logic Analyzer was key to capturing
hardware state for verification and debug

e Created “split-out” board for carriage

A form of Murphy’s law says: two digital signal
outputs shall be inadvertently connected
together. And those two (or more) points shall
always be the same level, except once in a very
great while and seemingly in a random fashion. In
this project we thought we would be smart to add
spare traces between the three FPGAs on the
PCB.

Having both an oscilloscope and a logic analyzer
together was extremely useful for this problem.
The logic analyzer is the only way to find difficult
problems, especially when they occur
infrequently, like these did. Once a logic analyzer
trigger was created, the oscilloscope was used to
identify non-logical (analog-like) behavior.

We used this tool combination frequently for
finding and solving various specific problems, as
well as verifying system performance.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #21

Slide #22

Verification Examples (2)

e Carriage position evaluation
- anticipated as problem area
- added internal nodes as outputs in FPGA

> carriage position register after decode and
extrapolator

- easily hooked up to logic analyzer

- first FPGA compile didn’t function properly
> state transitions were wrong

- FPGA recompiled with modified constraints

- verified as functioning properly through state
transitions

Printer Paper Position
Servo System

Analog ASIC
Processed in Interrupt Routine (Arabian)

Input + Blues
Tables _ Pum
in FW | | 7:%

Digital || and
Serial Channel

Blues
cPU AsIC
Interface | (Blues)

Processing

e Uses analog/digital and firmware components

Tip: Oscilloscope probe clips are available
that solder in place on the PCB, they hold an
oscilloscope probe directly to the PBC.
Locating them at strategic locations on the
board allows convenient hands-free-testing
for test points that need to monitored
frequently.

One instance of the verification problem was
verifying accurate paper movement between
successive rows of ink on the page. This motion is
controlled by a DC motor and servo system.
Position performance of this block is specified to
be more accurate than 1/10,000 inch and has to
cost nearly nothing. This servo has a very highly
convoluted, but highly accurate and inexpensive,
position feedback system. The feedback consists
of two components one digital the other analog.
Both components are sampled at the same time
but then they are spit up, serialized and delivered
to the digital ASIC at different times. The two
components are combined by firmware during the
interrupt service routine to form the paper
position feedback term.

Verifying that the components are being re-
combined correctly is a complex task. It is
necessary to time correlate analog, serial digital
and firmware tasks.

We used the HP 15600C integrated logic analyzer
and oscilloscope and 16505A prototype analyzer
to verify that the analog and digital components
were being re-combined at the digital ASIC
(emulator) into a proper working servo system.
HP now offers the enhanced HP 16700A system
for debug.

Slide #23

System Verification

Paper Mechanism
gears and rubber
rollers

ADC

Blues <:> Custom

ASIC s Analog =
I ASIC

r
S -

The system was partially verified as analog with
the oscilloscope. The logic analyzer de-serialized
the data stream and on the ASIC emulator we
were able, with the logic analyzer, to verify the
completed feedback path.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #24

Results

e Emulator flexibility and turn around allow for
fine tuning of firmware algorithms

e Printed with emulation system 4 weeks prior to
netlist release.

e Lab Protos Printing (complete printer with ASIC)
- three hours after delivery of first chips
- running from on board ROM
e |dentified timing problem w/interface to Carriage
Analog ASIC
- not found earlier due to 1/2 speed system
clock

The flexibility and turn around time of the ASIC
emulation system was key to meeting the
schedule. An incremental turn on one FPGA took
as little as 3 hours and a major change involving
all three FPGAs was accomplished overnight.

The system was fully integrated and printing four
weeks prior to netlist release. The remaining
time was used to work through a prioritized list of
system exercises, debugging, tweaking code, and
verification of code changes.

A snapshot of the firmware was taken just prior to
artwork release (about 2 weeks after netlist
release) for programming the on-board ROM.

When first silicon was delivered there were some
problems with the adapter board for the ICE
system, so ASICs were soldered directly to a
couple of printer PCAs. The first system was up
and running and printing within 3 hours of the
arrival of first silicon!!

While the results were very good, it wasn’t quite
shippable silicon. A timing problem was
discovered in an interface to the analog ASIC
which didn’t exist in the emulation system. This
problem did not occur in the emulation system
due to the reduced clock speed; % target clock
speed.

Slide #25

Team/Organizational Issues

e Used one area (Integration Cube) to bring up new
code prior to rolling into other emulation systems.

e Co-location of Firmware and Hardware team
increased communication.

e Experienced ASIC Engineer responsible for compile
emulation process.

e Having a foundry engineer as a member of the team
was helpful in delivering high quality netlist.

e Team accommodated change of manager and
technical lead.

The ASIC and firmware teams were interspersed,
placing hardware and firmware folks that were
working on subsystems next to each other. This
allowed frequent discussions leading to quick
accurate plans without the many assumptions
that are sometimes made to keep progressing.

In order to minimize the effort and problems
caused by bringing up new ASIC code on the
emulation system there was one central area with
a complete development system where all new
hardware code was exercised before being
propagated to other systems. This allowed the
firmware team to keep making progress on the
current revision while the next revision with
additions or changes was debugged. If the
change or addition was made at the request of a
firmware person this individual would join others
in the common area to assist in debugging the
latest revision

Taking on the many tasks required for emulation
sometimes doesn’t get all the respect it deserves.
However, having an experienced ASIC designer
involved can make a big difference. On our team,
the task was divided between a very experienced
person and a recent graduate. The experience
and ability to look at the effort from a broad
perspective allowed problems to be avoided and
thoughtful contingencies to be laid in place.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Another benefit that occurred by chance was the
addition to the team of an experienced ASIC
engineer who worked for the foundry. They took
on design responsibilities for modules that
improved the testability of the chip and pushed
for improvements in the synthesis process to
deliver a better netlist; one that needed a
minimum of manual adjustments for successful
place and route.

It is also interesting to point out that the
leadership of this team changed twice. The team
accommodated a change in both the project
manager and lead engineer. This speaks to the
integrity and synergy of the team.

Slide #26

Areas for Improvement

® Increase system clock speed
- Pen Interface problem slipped past emulation
due to reduced emulation vs. target clock
speed.
® Sync up Firmware and Hardware Schedule
- ended up cutting corners to get system
printing
e Improving manual partitioning process with
scripts.

As mentioned earlier in the results section, the
compromise of reducing clock speed did allow a
problem to go undetected in the emulation
system. While significant benefits were accrued
as a result of this methodology, it would be very
nice to run the emulator system at target clock
speeds.

Another area that has been a challenge is getting
management and the firmware team fully enrolled
in this methodology. There were some potential
barriers in the experienced person's thought
process about when firmware milestones really
must be achieved. This methodology is new and
different; not like the old tried and true method.
Since firmware is not released or “frozen” until
much later in the product development it is easy
push out firmware milestones. The goal of
printing before ASIC netlist release has helped
bring this into focus.

Structuring the ASIC with emulation in mind aids
manual partitioning to target FPGA sizes.
Automating this process further with scripts will
save time and increase the reliability of results.

QD HEWLETT®
PACKARD
Expanding Possibiliti

Slide #27

Summary

Co-Design of ASIC and firmware improves
time-to-market.

The methodology is enabled through the use of current
technologies for Logic Synthesis and FPGAs.

Design for Emulation minimizes the resources and
time required, and improves reliability of results.

Debug with integrated HP 15600C uncovered timing
problems.

Effective design practices, i.e., use of conventions,
rules and scripts, is also essential for success.

Slide #28

Current HP Logic Analyzer Products

e HP16600A and 16700A Logic Analysis Systems

— simultaneous triggering of Scope, Logic
Analyzer and Source Code

o HP Serial Analysis Tool Set

o HP 16557D Deep Memory State/Timing
Analyzers

o HP 16534A 2GSal/sec, 2 channel Oscilloscope

